Brucellosis Vaccines: Assessment of Brucella melitensis Lipopolysaccharide Rough Mutants Defective in Core and O-Polysaccharide Synthesis and Export

نویسندگان

  • David González
  • María-Jesús Grilló
  • María-Jesús De Miguel
  • Tara Ali
  • Vilma Arce-Gorvel
  • Rose-May Delrue
  • Raquel Conde-Álvarez
  • Pilar Muñoz
  • Ignacio López-Goñi
  • Maite Iriarte
  • Clara-M. Marín
  • Andrej Weintraub
  • Göran Widmalm
  • Michel Zygmunt
  • Jean-Jacques Letesson
  • Jean-Pierre Gorvel
  • José-María Blasco
  • Ignacio Moriyón
چکیده

BACKGROUND The brucellae are facultative intracellular bacteria that cause brucellosis, one of the major neglected zoonoses. In endemic areas, vaccination is the only effective way to control this disease. Brucella melitensis Rev 1 is a vaccine effective against the brucellosis of sheep and goat caused by B. melitensis, the commonest source of human infection. However, Rev 1 carries a smooth lipopolysaccharide with an O-polysaccharide that elicits antibodies interfering in serodiagnosis, a major problem in eradication campaigns. Because of this, rough Brucella mutants lacking the O-polysaccharide have been proposed as vaccines. METHODOLOGY/PRINCIPAL FINDINGS To examine the possibilities of rough vaccines, we screened B. melitensis for lipopolysaccharide genes and obtained mutants representing all main rough phenotypes with regard to core oligosaccharide and O-polysaccharide synthesis and export. Using the mouse model, mutants were classified into four attenuation patterns according to their multiplication and persistence in spleens at different doses. In macrophages, mutants belonging to three of these attenuation patterns reached the Brucella characteristic intracellular niche and multiplied intracellularly, suggesting that they could be suitable vaccine candidates. Virulence patterns, intracellular behavior and lipopolysaccharide defects roughly correlated with the degree of protection afforded by the mutants upon intraperitoneal vaccination of mice. However, when vaccination was applied by the subcutaneous route, only two mutants matched the protection obtained with Rev 1 albeit at doses one thousand fold higher than this reference vaccine. These mutants, which were blocked in O-polysaccharide export and accumulated internal O-polysaccharides, stimulated weak anti-smooth lipopolysaccharide antibodies. CONCLUSIONS/SIGNIFICANCE The results demonstrate that no rough mutant is equal to Rev 1 in laboratory models and question the notion that rough vaccines are suitable for the control of brucellosis in endemic areas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antigenic, Immunologic and Genetic Characterization of Rough Strains B.abortus RB51, B.melitensis B115 and B.melitensis B18

The lipopolysaccharide (LPS) is considered the major virulent factor in Brucella spp. Several genes have been identified involved in the synthesis of the three LPS components: lipid A, core and O-PS. Usually, Brucella strains devoid of O-PS (rough mutants) are less virulent than the wild type and do not induce undesirable interfering antibodies. Such of them proved to be protective against bruc...

متن کامل

Characterization of Brucella abortus O-polysaccharide and core lipopolysaccharide mutants and demonstration that a complete core is required for rough vaccines to be efficient against Brucella abortus and Brucella ovis in the mouse model.

Brucella abortus rough lipopolysaccharide (LPS) mutants were obtained by transposon insertion into two wbk genes (wbkA [putative glycosyltransferase; formerly rfbU] and per [perosamine synthetase]), into manB (pmm [phosphomannomutase; formerly rfbK]), and into an unassigned gene. Consistent with gene-predicted roles, electrophoretic analysis, 2-keto-3-manno-D-octulosonate measurements, and immu...

متن کامل

Rough vaccines in animal brucellosis: structural and genetic basis and present status.

Brucellosis control and eradication requires serological tests and vaccines. Effective classical vaccines (S19 in cattle and Rev 1 in small ruminants), however, induce antibodies to the O-polysaccharide of the lipopolysaccharide which may be difficult to distinguish from those resulting from infection and may thus complicate diagnosis. Rough attenuated mutants lack the O-polysaccharide and woul...

متن کامل

Protective properties of rifampin-resistant rough mutants of Brucella melitensis.

Vaccination against Brucella infections in animals is usually performed by administration of live attenuated smooth B. abortus strain S19 and B. melitensis strain Rev1. They are proven effective vaccines against B. abortus in cattle and against B. melitensis and B. ovis in sheep and goats, respectively. However, both vaccines have the main drawback of inducing O-polysaccharide-specific antibodi...

متن کامل

Deletion of the GI-2 integrase and the wbkA flanking transposase improves the stability of Brucella melitensis Rev 1 vaccine

Brucella melitensis Rev 1 is the best vaccine available for the prophylaxis of small ruminant brucellosis and, indirectly, for reducing human brucellosis. However, Rev 1 shows anomalously high rates of spontaneous dissociation from smooth (S) to rough (R) bacteria, the latter being inefficacious as vaccines. This S-R instability results from the loss of the O-polysaccharide. To overcome this pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008